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 Quantifying Some Simple Chaotic Models 
Using Lyapunov Exponents 

K. Khan, J. Mai and T. L. Graham 
 

Abstract: Lyapunov exponents are used to quantify various dynamical systems which have been found to display chaotic behaviour 
by embedding them in a common structural framework. 

 
Index Terms:  Chaotic behaviour, non-linear dynamical systems, Lyapunov exponents, strange attractors 

——————————      —————————— 
1  INTRODUCTION  
Chaos theory looks at the study of deterministic 
dynamical systems that are very sensitive to initial 
conditions. Small differences in initial conditions can lead 
to widely diverging outcomes, for such systems making 
long term predictions generally becomes impossible. 
Chaotic phenomena have been observed in numerous 
systems in the science and engineering fields [1]. 
Potential applications in engineering fields to the study 
and control of chaotic systems has become important, 
specifically chaos control and synchronization [2]. Several 
examples of a simple feedback system, comprising a 
single linear dynamic element and a static nonlinear 
function have shown to display chaotic behaviour [3], [4], 
[5].  To simplify the analysis, the nonlinearity is taken to 
be a piecewise-linear function as in Ogorzalek [3], 
Brockett [4] and Chua et al [5] all with third-order 
dynamics. Unification of these systems in to a model 
where the linear element has a general third-order 
transfer function and the nonlinearity is made up of up to 
five linear segments has been done [6]. In this paper the 
above model’s chaotic behaviour are quantified using 
Lyaponov exponents. 
 

2  BACKGROUND 
2.1 General Model Description 
Considering a description to represent a general third-
order system with a continuous piecewise nonlinearity of 
up to five linear segments. 

The feedback systems can be represented as in  
Fig 1. 
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where the linear element has the transfer function 

 

𝐺(𝑠) =  𝑎1𝑠2+𝑎2𝑠+ 𝑎3
𝑠3+𝑏1𝑠2+𝑏2𝑠+ 𝑏3

           (1) 
 
 
and the nonlinear element has the following piecewise-
linear characteristic as shown in Fig 2. 
 

 

 

 

 

 

 

 

 

This is represented analytically as follows:  
 

 

v = 𝑓(y) = 

Fig. 1 Feedback system representation 
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Fig. 2 Piecewise nonlinearity 
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2.2 Lyapunov Exponents  
Lyapunov exponents are the average exponential rates of 
divergence or convergence of nearby orbits in the phase 
space and are clearly fundamental importance in 
studying chaotic behaviour. Positive Lyapunov 
exponents indicate orbital divergence and chaos and the 
magnitude of the exponent reflects the time scale on 
which the system dynamics become unpredictable. 
Negative Lyapunov exponents set the time scale on 
which transients or perturbations of the system state will 
decay.  

The spectrum of Lyapunov exponents are defined in a 
manner that is particularly useful for the computational 
algorithm used to calculate them. Given a continuous 
dynamical system in an n-dimensional phase space, the 
long term behaviour of an infinitesimal n-sphere of initial 
conditions is monitored. The sphere will become an n-
ellipsoid due to the locally deforming nature of the flow. 
The ith one-dimensional Lyapunov exponent is then 
defined in terms of the length of the ellipsoidal principal 
axis 𝑃𝑖(𝑡)  [7]. 

𝜆𝑖   ≜     lim𝑡→∞   1
𝑡
  𝑙𝑙𝑙2  � 𝑃𝑖(𝑡)

𝑃𝑖(0)
 �  (3) 

where the 𝜆𝑖 are ordered from largest to smallest. 

Thus, the Lyapunov exponents are related to the 
expanding or contracting nature of different directions in 
phase space. Since the orientation of the ellipsoid changes 
continuously as it evolves, the directions associated with 
a given exponent vary in a complicated way through the 
attractor. Rearranging (1) we can see that 𝑃𝑖(𝑡) is 

𝑃𝑖(𝑡)  =   𝑃𝑖(0) 2𝜆𝑖 𝑡   (4) 

for sufficiently large t. So the linear extent of the ellipsoid 
grows as  2𝜆1 𝑡, the area defined by the first two principal 
axes grows as  2( 𝜆1 + 𝜆2  ) 𝑡 , the volume defined by the first 
three principal axes grows as  2( 𝜆1 + 𝜆2  +  𝜆3 ) 𝑡 and so on. 

Axes that are on the average expanding correspond to 
positive Lyapunov exponents and those that are 
contracting correspond to negative Lyapunov exponents. 
The exponential expansion indicated by a positive 
Lyapunov exponent is incompatible with motion on a 
bounded attractor unless some sort of folding process 
merges wildly separated trajectories. Each positive 
exponent reflects a ‘direction’ in which the system 
experiences the repeated stretching and folding that de-
correlates nearby states on the attractor. Therefore the 
long-term behaviour of an initial condition that is 
specified with any uncertainty cannot be predicted, this is 
termed chaos. An attractor for a dissipative system with 
one or more positive Lyapunov exponents is said to be 
‘strange’ or ‘chaotic’. 

The magnitudes of the Lyapunov exponents quantify an 
attractor’s dynamics in information theoretic terms. The 
exponents measure the rate at which system processes 
create or destroy information. Thus the exponents are 
expressed in bits of information per second or bits/orbit 
for a continuous system and bits/iteration for a discrete 
system. So for example an attractor with a positive 
exponent of magnitude 2.16 bits/second and if the initial 
point were specified with an accuracy of one part million, 
i.e. 20 bits, the future behaviour could not be predicted 
after about 9 seconds. All strange attractors in a three-
dimensional phase space have the same spectral type         
(+ , 0 , - ). A positive exponent indicating chaos within the 
attractor, a zero exponent for the slower than exponential 
motion along an orbit and a negative exponent so that the 
phase space contains an attractor. 

 
2.3 Computation of Lyapunov Exponents 
The technique for determining the complete Lyapunov 
spectrum from a set of differential equations has been 
developed [8], [9]. Lyapunov exponents are defined as 
the long-term evolution of the axes of an infinitesimal 
sphere of states. This procedure could be implemented by 
defining the principal axes with initial conditions whose 
separations are as small as computer limitations allow 
and evolving these with the nonlinear equations of 
motion. One problem with this approach is that in a 
chaotic system we cannot guarantee the condition of 
small separations for times on the order of hundreds of 
orbital periods for the convergence of the spectrum. 

This problem can be avoided with the use of a phase 
space plus tangent space approach. A ‘fiducial’ trajectory 
(the centre of the sphere) is defined by the action of the 
nonlinear equations of motion on some initial condition. 
Trajectories of points on the surface of the sphere are 
defined by the action of the linearized equations of 
motion on points infinitesimally separated from the 
fiducial trajectory. In particular, the principal axes are 
defined by the evolution via the linearized equations of 
an initially orthonormal vector frame anchored to the 
fiducial trajectory. This procedure is implemented by 
creating the fiducial trajectory by way of integrating the 
nonlinear equations for some post-transients initial 
condition. Simultaneously, the linearized equations of 
motion are integrated for n different initial conditions 
defining an arbitrarily oriented frame of n orthonormal 
vectors. As well as each vector diverging in magnitude, 
there appears another problem of a singularity occurring. 
In chaotic systems, each vector tends to fall along the 
local direction of the most rapid growth. To overcome 
these two problems a technique from linear algebra is 
repeatedly used known as the Gram-Schmidt 
reorthonormalization (GSR) procedure on the vector 
frame. The importance of the orientation-preserving 
property of GSR is seen from the alternative definition of 
the spectrum of Lyapunov exponents, where the rate of 
length growth determines 𝜆1 , the rate of area growth 
determines  𝜆1 +  𝜆2   and in general the rate of k-volume 
growth determines  ∑  𝜆𝑖𝑘

1 . 

My− (MΔ− 1)sgn(y)  , |y|  >   Δ       
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When GSR is used the initial and final volumes of the 
elements of each dimension: 

[ 𝐿�𝑡𝑗�,𝐿′�𝑡𝑗+1�;𝐴�𝑡𝑗�,𝐴′�𝑡𝑗+1�;𝑉�𝑡𝑗�,𝑉′�𝑡𝑗+1�… ]  

are recorded and used to update the running exponential 
growth rates. If m replacement elements spanning a time 
t have been used, the exponential growth rate of the first 
principal axis is given by 

(𝜆1 )𝑚 =  1
𝑡

  ∑ 𝑙𝑙𝑙2   �
𝐿′(𝑡𝑗+1)

𝐿(𝑡𝑗)
�𝑚

𝑗=1   (5) 

which is identical to the growth rate,  

 𝜆1 =  1
𝑡

  𝑙𝑙𝑙2  �𝐿
′(𝑡1)
𝐿(𝑡0)

�   (6) 

that would have been obtained from the evolution of a 
single length element had we been able to follow it for 
time t. Similarly,  

(𝜆1 +  𝜆2 )𝑚 =  1
𝑡

  ∑ 𝑙𝑙𝑙2   �
𝐴′(𝑡𝑗+1)

𝐴(𝑡𝑗)
�𝑚

𝑗=1   (7) 

which is identical to the exponential growth rate of the 
area element defined by the first two principal axis 
vectors had we been able to follow it for a long time t. 
The remaining exponents are defined in a similar way. 

 

 

3. RESULTS 
The Lyapunov exponents for the different dynamical 
systems presented in section 1 are calculated. The 
computer programme used to calculate the Lyapunov 
exponents is a modified version to the one given by Wolf 
et al [10]. The dynamical equations of motion of the 
different systems together with their linearized equations 
of motion are used in the programme.  

The systems whose Lyapunov exponents are to be 
calculated are given below with their transfer functions 
and associated pole distributions for their observed 
complex behaviour in Table 1. 

 

 

 

 

Model Transfer 
Function 

Poles 
 

Chua’s 
circuit 𝐺(𝑠) =

2.7𝛿(𝑠2 + 0.7𝑠 + 7.2)
𝑠3 + 2.5𝑠2 + 4𝑠 + 12.9

 
𝑠 ≈  −2.8 

 
𝑠 ≈ 0.1 ±  𝑗 2.2 

Brockett’s 
system 𝐺(𝑠) =

5.4
𝑠3 + 𝑠2 + 1.25𝑠 + 3.6

 
𝑠 ≈  −1.6 

 
𝑠 ≈ 0.3 ±  𝑗 1.44 

Ogorzalek’s 
system 𝐺(𝑠) =

40
𝑠3 + 5𝑠2 + 6𝑠 + 36

 
𝑠 ≈  −5.2 

 
𝑠 ≈ 0.09 ± 𝑗 2.6 

 

 

The corresponding calculated Lyapunov exponents are 
given in Table 2. 

Model Lyapunov Exponents 

Chua’s Circuit 
(Chaotic) ( 0.36,  -0.003,  -2.46 ) 

Brockett’s System 
(Chaotic) ( 0.14,  -0.008,  -1.57 ) 

Ogorzalek’s 
System 

(Chaotic) 
( 0.13,  -0.006,  -7.34 ) 

Ogorzalek’s 
System 
(Stable) 

( -0.13,  -2.54,  -4.54 ) 

 

 

7. CONCLUSIONS 
It is found that the spectrum of Lyapunov exponents for 
our different models, Chua, Brockett and Ogorzalek 
correspond closely to that describing a strange attractor  
(+, 0, -). We see in Table 2 above that in each case, for 
certain parameter values, we have one positive, one 
approximately zero and one negative exponent signifying 
that the dynamical structure of the different systems is 
indeed one of chaotic behaviour. The different dynamical 
behaviour of the models depends upon the different 
parameter values chosen. In our systems if the 
appropriate parameter values are chosen such that the 
systems are structurally stable then we see from Table 2, 
for Ogorzalek’s system (stable) that the corresponding 
Lyapunov spectrum is that of three negative exponents 
indicating a stable fixed point as expected. Knowing the 
dynamical behaviour of a system for different parameter 
values is important from a control perspective and it 
allows one to avoid undesirable types of system 
behaviour. 

 

Table 1 

Table 2 
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